Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Evid Based Integr Med ; 28: 2515690X231165333, 2023.
Article in English | MEDLINE | ID: covidwho-2301978

ABSTRACT

Corticosteroids improve the complications of Covid-19 but may cause some side effects such as hyperglycemia. Royal jelly is one of the bee products that exert anti-inflammatory, insulin-like, and hypoglycemic activities. The present study was conducted to investigate the effect of royal jelly capsules on blood sugar and the clinical course of Covid-19 in the patients receiving corticosteroid therapy. In this clinical trial, 72 Covid-19 patients with positive reverse transcription polymerase chain reaction (RT-PCR) test and pulmonary involvement hospitalized in Shahrekord Hajar Hospital were enrolled and randomized into two groups: treatment (receiving corticosteroids and Royal Jelly 1000 mg capsules daily for 7 days) and placebo (given corticosteroids and placebo). Laboratory tests, blood sugar, and clinical courses were determined and compared. Data was analyzed using SPSS version 16. On day 7 after the onset of the intervention, the dosage and frequency of insulin, FBS level, and required corticosteroid showed a decrease in both groups but the inter-group difference was not significant (P > .05). As well, the Spo2 level indicated a non-significant increase and hospital stay length indicated a non-significant decrease in the intervention group (P > .05). Among the symptoms, only headache, cough, and dyspnea indicated an improvement in the intervention group (P < .05). Overall, the results indicated the short-term consumption of royal jelly could not significantly improve blood sugar and the clinical course of Covid-19; however, it could significantly improve headache, cough, and dyspnea in the patients.


Subject(s)
COVID-19 , Headache Disorders, Primary , Hypoglycemia , Insulins , Bees , Animals , Blood Glucose , Hypoglycemia/drug therapy , Disease Progression
2.
PLoS One ; 18(3): e0279118, 2023.
Article in English | MEDLINE | ID: covidwho-2269932

ABSTRACT

The Covid-19 associated mucormycosis (CAM) is an emerging disease affecting immunocompromised patients. Prevention of such infections using probiotics and their metabolites persist as effective therapeutic agents. Therefore, the present study emphasizes on assessment of their efficacy and safety. Samples from different sources like human milk, honey bee intestine, toddy, and dairy milk were collected, screened and characterized for potential probiotic lactic acid bacteria (LAB) and their metabolites to be used as effective antimicrobial agents to curtail CAM. Three isolates were selected based on probiotic properties and characterized as Lactobacillus pentosus BMOBR013, Lactobacillus pentosus BMOBR061 and Pediococcus acidilactici BMOBR041 by 16S rRNA sequencing and MALDI TOF-MS. The antimicrobial activity against standard bacterial pathogens showed ˃9 mm zone of inhibition. Furthermore, the antifungal activity of three isolates was tested against Aspergillus flavus MTCC 2788, Fusarium oxysporum, Candida albicans and Candida tropicalis where the results showed significant inhibition of each fungal strain. Further studies were carried out on lethal fungal pathogens like Rhizopus sp. and two Mucor sp. which are associated with post Covid-19 infection in immunosuppressed diabetic patients. Our studies on CAM inhibitory effect of LAB revealed the efficient inhibition against Rhizopus sp. and two Mucor sp. The cell free supernatants of three LAB showed varied inhibitory activity against these fungi. Following the antimicrobial activity, the antagonistic metabolite 3-Phenyllactic acid (PLA) in culture supernatant was quantified and characterized by HPLC and LC-MS using standard PLA (Sigma Aldrich). The isolate L. pentosus BMOBR013 produced highest PLA (0.441 g/L), followed by P. acidilactici BMOBR041 (0.294 g/L) and L. pentosus BMOBR061 (0.165 g/L). The minimum inhibitory concentration of HPLC eluted PLA on the Rhizopus sp. and two Mucor sp. was found to be 180 mg/ml which was further confirmed by inhibition of total mycelia under live cell imaging microscope.


Subject(s)
Anti-Infective Agents , COVID-19 , Lactobacillales , Mucormycosis , Probiotics , Humans , Animals , Bees/genetics , Mucormycosis/drug therapy , RNA, Ribosomal, 16S/genetics , Lactobacillales/genetics , Fungi/genetics , Probiotics/pharmacology , Polyesters
3.
Curr Pharm Des ; 28(35): 2867-2878, 2022.
Article in English | MEDLINE | ID: covidwho-2266994

ABSTRACT

Honey bees provide many products exerting a wide range of benefits to humans. Honey, propolis, royal jelly, beeswax, bee venom, bee pollen and bee bread have been used as natural medicines since ancient times because of their therapeutic effects. These products have demonstrated healing properties against wounds, diabetes, gastrointestinal diseases, cancer, asthma, neurological diseases, bacterial and viral infections. The antibacterial and antibiofilm activity of honey bee products is widely studied, and a huge body of evidence supports it. On the other hand, their antiviral effect has not been extensively studied. However, recent research has demonstrated their potential against various viral infections including SARS-CoV-2. Hence, honey bee products could be alternatives to treat viral diseases, especially when there is no effective treatment available. This narrative review aims to present up-to-date data (including ongoing clinical trials) regarding the antiviral activity of honey bee products, aiming to elucidate how honey bee product supplementation contributes to antiviral treatment.


Subject(s)
COVID-19 , Honey , Propolis , Bees , Humans , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2 , Propolis/pharmacology , Propolis/therapeutic use
4.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216967

ABSTRACT

Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.


Subject(s)
Ascomycota , Coronavirus, Feline , RNA Viruses , Talaromyces , Cats , Bees , Animals , Antiviral Agents/pharmacology , Paralysis , Mammals
5.
Prev Vet Med ; 212: 105853, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2182416

ABSTRACT

Varroosis (caused by the Varroa destructor mite) is a key health issue for honey bees in North America. Because these mites can exist in reservoirs of feral honey bee colonies, eradication is impossible, and instead efforts are made to maintain mites below a critical threshold. Monitoring for Varroa mites within a population is key for allocating resources and targeting interventions but surveillance can be difficult and/or expensive. This project aims to reflect on the success of data dashboards developed throughout the 2019-coronavirus pandemic and showcase how these methods can improve surveillance of Varroa mite infestations in Ontario, Canada. Dashboards provide a consistent source of information and epidemiologic metrics through data visualizations, and mobilize data otherwise bound to tables and intermittent reports. In the present work, an interactive dashboard for the surveillance of Varroa mite infestations across the province is proposed. This dashboard was developed using routine ministry inspection data to depict the spatio-temporal distribution of mites across a five-year data collection period. Through interactive figures and plots, able to be disaggregated to a specific region and time frame, this dashboard will allow for members of the beekeeping community to monitor provincial mite levels throughout the season. Seven criteria found to be common across highly actionable COVID-19 dashboards were used in a beta testing stage of development to assess the quality of the dashboard, and critically reflect on its strengths and weaknesses. Furthermore, future directions for surveillance dashboards are explored, including integration with citizen science data collection to develop a comprehensive province-wide surveillance system. The outcome of this project is a functional dashboard proof-of-concept for population-level monitoring of Varroa mites and a model for future tools designed for other species and diseases.


Subject(s)
COVID-19 , Mite Infestations , Varroidae , Bees , Animals , Ontario/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Mite Infestations/veterinary , Beekeeping
6.
Environ Sci Pollut Res Int ; 28(30): 40507-40514, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-2113733

ABSTRACT

After the early advent of the Coronavirus Disease 2019 (COVID-19) pandemic, myriads of FDA-approved drugs have been massively repurposed for COVID-19 treatment based on molecular docking against selected protein targets that play fundamental roles in the replication cycle of the novel coronavirus. Honeybee products are well known of their nutritional values and medicinal effects. Bee products contain bioactive compounds in the form of a collection of phenolic acids, flavonoids, and terpenes of natural origin that display wide spectrum antiviral effects. We revealed by molecular docking the profound binding affinity of 14 selected phenolics and terpenes present in honey and propolis (bees glue) against the main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) enzymes of the novel SARS-CoV-2 virus (the causative agent of COVID-19) using AutoDock Vina software. Of these compounds, p-coumaric acid, ellagic acid, kaempferol, and quercetin have the strongest interaction with the SARS-CoV-2 target enzymes, and it may be considered an effective COVID-19 inhibitor.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Animals , Antiviral Agents/pharmacology , Bees , Coronavirus Infections/drug therapy , Humans , Molecular Docking Simulation , SARS-CoV-2
7.
Curr Drug Targets ; 23(13): 1277-1287, 2022.
Article in English | MEDLINE | ID: covidwho-2098966

ABSTRACT

Covid-19 may be associated with various neurological disorders, including dysautonomia, a dysfunction of the autonomic nervous system (ANS). In Covid-19, hypoxia, immunoinflammatory abnormality, and deregulation of the renin-angiotensin system (RAS) may increase sympathetic discharge with dysautonomia development. Direct SARS-CoV-2 cytopathic effects and associated inflammatory reaction may lead to neuroinflammation, affecting different parts of the central nervous system (CNS), including the autonomic center in the hypothalamus, causing dysautonomia. High circulating AngII, hypoxia, oxidative stress, high pro-inflammatory cytokines, and emotional stress can also provoke autonomic deregulation and high sympathetic outflow with the development of the sympathetic storm. During SARS-CoV-2 infection with neuro-invasion, GABA-ergic neurons and nicotinic acetylcholine receptor (nAChR) are inhibited in the hypothalamic pre-sympathetic neurons leading to sympathetic storm and dysautonomia. Different therapeutic modalities are applied to treat SARS-CoV-2 infection, like antiviral and anti-inflammatory drugs. Ivermectin (IVM) is a robust repurposed drug widely used to prevent and manage mild-moderate Covid-19. IVM activates both GABA-ergic neurons and nAChRs to mitigate SARS-CoV-2 infection- induced dysautonomia. Therefore, in this brief report, we try to identify the potential role of IVM in managing Covid-19-induced dysautonomia.


Subject(s)
COVID-19 , Primary Dysautonomias , Humans , Animals , Bees , SARS-CoV-2 , Ivermectin , Hypoxia , gamma-Aminobutyric Acid
8.
G Ital Cardiol (Rome) ; 23(2 Suppl 1): e3-e14, 2022 02.
Article in Italian | MEDLINE | ID: covidwho-2089544

ABSTRACT

Razionale. In Italia la pandemia COVID-19 ha determinato importanti riorganizzazioni logistiche nell'erogazione delle cure ospedaliere e di specialistica ambulatoriale. Ciò ha spinto clinici e decisori pubblico-amministrativi della Sanità ad adottare nuovi modelli organizzativi in molteplici scenari clinici. Materiali e metodi. Il registro OIBOH (Optimal Intensification therapy in a Broad Observed High risk patient population with coronary disease) è uno studio osservazionale "cross-sectional" condotto in vari centri italiani di cardiologia ambulatoriale per valutare durante la pandemia COVID-19 la capacità di identificare in breve tempo i pazienti ad altissimo rischio cardiovascolare residuo dopo un evento coronarico recente (<12 mesi). Successivamente alla valutazione clinica iniziale, venivano arruolati i pazienti ritenuti ad altissimo rischio, registrando le caratteristiche cliniche e di trattamento in una scheda di raccolta dati elettronica.Risultati. Al registro hanno partecipato 134 centri di cardiologia ambulatoriale che hanno arruolato 1428 pazienti su 3227 esaminati fra quelli che avevano avuto accesso ad una visita cardiologica durante la pandemia nel periodo ottobre 2020-marzo 2021. Il criterio di arruolamento era costituito dall'aver avuto una diagnosi di coronaropatia confermata angiograficamente negli ultimi 12 mesi, per sindrome coronarica acuta (SCA) o cronica (SCC). La SCA come evento indice era presente nel 93% dei pazienti arruolati mentre la SCC nel 7%. L'età media era 67 ± 10 anni, il 25% era di sesso femminile. Il 96.1% dei pazienti con SCA e il 67.6% dei pazienti con SCC sono stati sottoposti a rivascolarizzazione coronarica. Il 46% e 47% dei pazienti con SCA e SCC, rispettivamente, era diabetico. Oltre il 65% dei pazienti presentava una malattia coronarica multivasale. È stata osservata una importante prevalenza di arteriopatia periferica (17.5% nei pazienti con SCA e 19.6% nei pazienti con SCC). I valori di pressione arteriosa e frequenza cardiaca risultavano ben controllati (128 ± 25.2 mmHg e 65 ± 12.3 b/min nei pazienti con SCA; 127 ± 23.4 mmHg e 67 ± 13.2 b/min nei pazienti con SCC). Viceversa, è stato riportato uno scarso controllo dei livelli di colesterolemia LDL, con un valore medio di 88.8 ± 38.6 mg/dl nei pazienti con SCA e 86 ± 36.6 mg/dl nei pazienti con SCC. Solo il 16.4% dei pazienti con SCA raggiungeva i livelli raccomandati dalle attuali linee guida europee. Nonostante l'estensivo uso di statine (>90%), si è rilevato un utilizzo limitato dell'associazione statina ad alta intensità + ezetimibe (solo il 22.4% dei pazienti). Estremamente basso è stato l'utilizzo di inibitori di PCSK9 (2.5%). La duplice terapia antiaggregante piastrinica (DAPT) è risultata complessivamente ben condotta fin dalla dimissione ospedaliera. Nei pazienti in DAPT, l'inibitore P2Y12 più utilizzato è risultato il ticagrelor alla dose di 90 mg, soprattutto dopo un evento coronarico acuto (in circa l'80% dei pazienti con SCA). Nella stragrande maggioranza dei casi (>90%) i cardiologi ambulatoriali hanno posto indicazione a prosecuzione della DAPT oltre i 12 mesi con aspirina e ticagrelor 60 mg bid. Conclusioni. La gestione del paziente con coronaropatia in fase cronica stabilizzata è molto complessa. Tale complessità logistico-gestionale si è accentuata durante la pandemia COVID-19. Il registro OIBOH ha evidenziato un'ottima capacità di identificare le problematiche clinico-prognostiche delle cardiologie ambulatoriali italiane, specie nei pazienti ad altissimo rischio residuo. Rimangono importanti aree di miglioramento come uno stretto controllo della colesterolemia LDL, mentre altre raccomandazioni delle linee guida, come la prosecuzione della DAPT con ticagrelor 60 mg oltre i 12 mesi, risultano ben applicate. L'implementazione dell'assistenza con la medicina digitale e l'intelligenza artificiale potrebbe migliorare di molto la performance dei clinici.


Subject(s)
COVID-19 , Coronary Disease , Animals , Bees , Disease Outbreaks , Humans , Pandemics/prevention & control , Proprotein Convertase 9 , Registries , Secondary Prevention
9.
Molecules ; 27(15)2022 Jul 28.
Article in English | MEDLINE | ID: covidwho-1994116

ABSTRACT

The targeted quantitative NMR (qNMR) approach is a powerful analytical tool, which can be applied to classify and/or determine the authenticity of honey samples. In our study, this technique was used to determine the chemical profiles of different types of Polish honey samples, featured by variable contents of main sugars, free amino acids, and 5-(hydroxymethyl)furfural. One-way analysis of variance (ANOVA) was performed on concentrations of selected compounds to determine significant differences in their levels between all types of honey. For pattern recognition, principal component analysis (PCA) was conducted and good separations between all honey samples were obtained. The results of present studies allow the differentiation of honey samples based on the content of sucrose, glucose, and fructose, as well as amino acids such as tyrosine, phenylalanine, proline, and alanine. Our results indicated that the combination of qNMR with chemometric analysis may serve as a supplementary tool in specifying honeys.


Subject(s)
Honey , Amino Acids/analysis , Animals , Bees , Honey/analysis , Magnetic Resonance Spectroscopy/methods , Poland , Principal Component Analysis
10.
Med Res Rev ; 42(2): 897-945, 2022 03.
Article in English | MEDLINE | ID: covidwho-1925975

ABSTRACT

Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.


Subject(s)
Propolis , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bees , Humans , Immunity , Immunomodulation , Propolis/chemistry , Propolis/pharmacology , Propolis/therapeutic use
11.
Ambio ; 51(8): 1764-1771, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1920211

ABSTRACT

Actions potentially harmful to the environment that are otherwise illegal are sometimes permitted in cases of emergency. How to define an emergency can therefore be both controversial and highly consequential. In this article, we explore one such contemporary controversy: when the use of neonicotinoid pesticides, banned in the EU, can nevertheless be granted an emergency authorization. We analyse several questions, currently before the EU Court of Justice in the ongoing Pesticide Action Network Europe and Others case, that will determine the scope of an "emergency" in the context of derogating from the Pesticide Regulation, and that may impact how "emergencies" are defined in other legal contexts. We argue that the circumstances do not support a legal finding that emergency authorization is justified in this case, and that, in general, "emergencies" must be narrowly defined when justifying measures that involve risks to human health and the environment.


Subject(s)
Pesticides , Bees , Europe , Humans , Neonicotinoids , Pesticides/toxicity
12.
Toxins (Basel) ; 14(5)2022 05 16.
Article in English | MEDLINE | ID: covidwho-1875758

ABSTRACT

Melittin, the main toxic component in the venom of the European honeybee, interacts with natural and artificial membranes due to its amphiphilic properties. Rather than interacting with a specific receptor, melittin interacts with the lipid components, disrupting the lipid bilayer and inducing ion leakage and osmotic shock. This mechanism of action is shared with pneumolysin and other members of the cholesterol-dependent cytolysin family. In this manuscript, we investigated the inverse correlation for cholesterol dependency of these two toxins. While pneumolysin-induced damage is reduced by pretreatment with the cholesterol-depleting agent methyl-ß-cyclodextrin, the toxicity of melittin, after cholesterol depletion, increased. A similar response was also observed after a short incubation with lipophilic simvastatin, which alters membrane lipid organization and structure, clustering lipid rafts. Therefore, changes in toxin sensitivity can be achieved in cells by depleting cholesterol or changing the lipid bilayer organization.


Subject(s)
Lipid Bilayers , Melitten , Animals , Bacterial Proteins , Bees , Cholesterol , Melitten/chemistry , Melitten/toxicity , Streptolysins/toxicity
13.
Environ Pollut ; 307: 119504, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1851032

ABSTRACT

The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.


Subject(s)
COVID-19 , Metals, Heavy , Animals , Bees , COVID-19/epidemiology , Cadmium/analysis , China , Communicable Disease Control , Environmental Monitoring/methods , Environmental Pollution/analysis , Humans , Italy/epidemiology , Metals, Heavy/analysis , Pandemics , Risk Assessment
14.
Adv Food Nutr Res ; 101: 129-152, 2022.
Article in English | MEDLINE | ID: covidwho-1850516

ABSTRACT

The current COVID-19 pandemic has demonstrated that we are not prepared to deal with food security amid unexpected situations; the FAO (Food and Agriculture Organization) has stipulated that the future of our food & agriculture looks challenging toward the year 2050; primarily in response to the fact that global population is expected to increase by 9 billion people by 2050. Although entomophagy has been practiced by humans for thousands of years, until recently, edible insects have gained special attention due to their high nutritional value (particularly their high protein and essential amino acid content) and lower environmental impact that could help alleviate the global food demand. Edible insects are classified into eight main orders belonging to Blattodea (cockroaches and termites), Coleoptera (beetles), Diptera (flies), Hemiptera (cicadas, stink bugs), Hymenoptera (bees, wasps, ants), Lepidoptera (butterflies, moths), Odonata (dragonflies), and Orthoptera (crickets, grasshoppers, locusts). Several traditional cooking (e.g., boiling, roasting, sun-drying) and processing technologies (e.g., pasteurization, enzymatic proteolysis, high pressure processing) have shown that it is feasible to prepare safe and nutritious insects and/or foods with insects. Nevertheless, challenges associated with consumers acceptance to eat insects, as well as potential presence of anti-nutritive factors and allergens, need to be carefully evaluated as the industry grows in the coming years. Foreseeing such food shortages during pandemics and future food security concerns, consumers, scientists, and the food industry need to consider the value of farming insects as promising protein sources.


Subject(s)
Butterflies , COVID-19 , Edible Insects , Odonata , Allergens , Animals , Bees , Humans , Insecta , Pandemics
15.
Biol Open ; 11(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1833451

ABSTRACT

The COVID-19 pandemic has illustrated the need for the development of fast and reliable testing methods for novel, zoonotic, viral diseases in both humans and animals. Pathologies lead to detectable changes in the volatile organic compound (VOC) profile of animals, which can be monitored, thus allowing the development of a rapid VOC-based test. In the current study, we successfully trained honeybees (Apis mellifera) to identify SARS-CoV-2 infected minks (Neovison vison) thanks to Pavlovian conditioning protocols. The bees can be quickly conditioned to respond specifically to infected mink's odours and could therefore be part of a wider SARS-CoV-2 diagnostic system. We tested two different training protocols to evaluate their performance in terms of learning rate, accuracy and memory retention. We designed a non-invasive rapid test in which multiple bees are tested in parallel on the same samples. This provided reliable results regarding a subject's health status. Using the data from the training experiments, we simulated a diagnostic evaluation trial to predict the potential efficacy of our diagnostic test, which yielded a diagnostic sensitivity of 92% and specificity of 86%. We suggest that a honeybee-based diagnostics can offer a reliable and rapid test that provides a readily available, low-input addition to the currently available testing methods. A honeybee-based diagnostic test might be particularly relevant for remote and developing communities that lack the resources and infrastructure required for mainstream testing methods.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Bees , COVID-19/diagnosis , Humans , Learning , Odorants , Pandemics
16.
Viruses ; 14(3)2022 02 28.
Article in English | MEDLINE | ID: covidwho-1715782

ABSTRACT

Bees, both wild and domesticated ones, are hosts to a plethora of viruses, with most of them infecting a wide range of bee species and genera. Although viral discovery and research on bee viruses date back over 50 years, the last decade is marked by a surge of new studies, new virus discoveries, and reports on viral transmission in and between bee species. This steep increase in research on bee viruses was mainly initiated by the global reports on honeybee colony losses and the worldwide wild bee decline, where viruses are regarded as one of the main drivers. While the knowledge gained on bee viruses has significantly progressed in a short amount of time, we believe that integration of host defense strategies and their effect on viral dynamics in the multi-host viral landscape are important aspects that are currently still missing. With the large epidemiological dataset generated over the last two years on the SARS-CoV-2 pandemic, the role of these defense mechanisms in shaping viral dynamics has become eminent. Integration of these dynamics in a multi-host system would not only greatly aid the understanding of viral dynamics as a driver of wild bee decline, but we believe bee pollinators and their viruses provide an ideal system to study the multi-host viruses and their epidemiology.


Subject(s)
Bees , Host Microbial Interactions , Insect Viruses , Animals , Humans , Insect Viruses/genetics , SARS-CoV-2/genetics
17.
Nutrients ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1708909

ABSTRACT

The coronavirus disease 2019 (COVID-19) is an epidemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Populations at risk as well as those who can develop serious complications are people with chronic diseases such as diabetes, hypertension, and the elderly. Severe symptoms of SARS-CoV-2 infection are associated with immune failure and dysfunction. The approach of strengthening immunity may be the right choice in order to save lives. This review aimed to provide an overview of current information revealing the importance of bee products in strengthening the immune system against COVID-19. We highlighted the immunomodulatory and the antiviral effects of zinc and polyphenols, which may actively contribute to improving symptoms and preventing complications caused by COVID-19 and can counteract viral infections. Thus, this review will pave the way for conducting advanced experimental research to evaluate zinc and polyphenols-rich bee products to prevent and reduce the severity of COVID-19 symptoms.


Subject(s)
COVID-19 , Pandemics , Aged , Animals , Bees , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , SARS-CoV-2 , Zinc/therapeutic use
18.
Environ Sci Pollut Res Int ; 29(7): 9592-9605, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611468

ABSTRACT

COVID-19 pandemic has passed to the front all the contradictions of the beekeeping sector: the valuable role of bee products as immune enhancers and antiviral agents and the impact that unsustainability of human activities has on bees' health and survival. The COVID-19 emergency led several countries to adopt severe restriction measures to contrast the infection. The lowering of industrial and commercial activities, transports, and the general lockdown had immediate consequences on the air quality, significantly improving environmental conditions. This had a positive impact on honeybees' life's quality. On the other hand, the bee and beehive transportation limitations threaten to hit food production by affecting the pollinator service, and this is particularly true in large, food-exporting countries like the USA and China where due to the few numbers of local bees, beekeepers import them by other countries and convey by truck hives for thousands of kilometers to pollinate crops. Furthermore, honeybee products, focusing on their natural pharmacological properties, can play an essential role as a potential natural contrast to the virus by enhancing the immunity defenses of both humans and animals, and their demand by consumers is expected to increase. Several researchers in the last months focused their attention on bee products to evaluate their effect in the cure of COVID-19 patients to ameliorate the symptoms or to contrast the coronavirus directly. This review reports these preliminary results.


Subject(s)
Beekeeping , COVID-19 , Animals , Antiviral Agents , Bees , Communicable Disease Control , Humans , Pandemics , SARS-CoV-2
19.
J Econ Entomol ; 114(6): 2245-2254, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1429266

ABSTRACT

To gauge the impact of COVID-19 on the Canadian beekeeping sector, we conducted a survey of over 200 beekeepers in the fall of 2020. Our survey results show Canadian beekeepers faced two major challenges: 1) disrupted importation of honey bees (Hymenoptera: Apidae) (queen and bulk bees) that maintain populations; and 2) disrupted arrival of temporary foreign workers (TFWs). Disruptions in the arrival of bees and labor resulted in fewer colonies and less colony management, culminating in higher costs and lower productivity. Using the survey data, we develop a profitability analysis to estimate the impact of these disruptions on colony profit. Our results suggest that a disruption in either foreign worker or bee arrival allows beekeepers to compensate and while colony profits are lower, they remain positive. When both honey bee and foreign workers arrivals are disrupted for a beekeeper, even when the beekeeper experiences less significant colony health and cost impacts, a colony with a single pollination contract is no longer profitable, and a colony with two pollination contracts has significantly reduced profitability. As COVID-19 disruptions from 2020 and into 2021 become more significant to long-term colony health and more costly to a beekeeping operation, economic losses could threaten the industry's viability as well as the sustainability of pollination-dependent crop sectors across the country. The economic and agricultural impacts from the COVID-19 pandemic have exposed a vulnerability within Canada's beekeeping industry stemming from its dependency on imported labor and bees. Travel disruptions and border closures pose an ongoing threat to Canadian agriculture and apiculture in 2021 and highlight the need for Canada's beekeeping industry to strengthen domestic supply chains to minimize future risks.


Subject(s)
Beekeeping , COVID-19 , Animals , Bees , Canada , Pandemics , SARS-CoV-2
20.
Sci Total Environ ; 805: 150327, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1428471

ABSTRACT

SARS-CoV-2 is responsible for the COVID-19 pandemic. Airflows sustain the infection spread, and in densely urbanized areas airborne particulate matters (PMs) are deemed to aggravate the viral transmission. Apis mellifera colonies are used as bioindicators as they allow environmental sampling of different nature, PMs included. This experiment demonstrates for the first time the possible use of honey bee colonies in the SARS-CoV-2 monitoring. The trial was conducted in Bologna on 18 March 2021, when the third wave of the Italian pandemic was at its peak and environmental conditions allowed high PM concentrations in the air. Sterile swabs were lined up at the hive entrance to sample the dusty material on the body of returning foragers. All of them resulted positive for the target genes of viral SARS-CoV-2 RNA. Likewise, internal samples were taken, but they resulted in no amplification of the target sequences. This experiment does not support speculations about the role of honey bees or their products in SARS-CoV-2 transmission. However, it indicates a novel use of A. mellifera colonies in the environmental detection of airborne human pathogens, at least in a densely urbanized area, deserving better understanding and possible integration with data from automatic air samplers.


Subject(s)
COVID-19 , Environmental Biomarkers , Animals , Bees , Humans , Pandemics , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL